A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.
نویسندگان
چکیده
Ammonia excretion at the gills of fish has been studied for 80 years, but the mechanism(s) involved remain controversial. The relatively recent discovery of the ammonia-transporting function of the Rhesus (Rh) proteins, a family related to the Mep/Amt family of methyl ammonia and ammonia transporters in bacteria, yeast and plants, and the occurrence of these genes and glycosylated proteins in fish gills has opened a new paradigm. We provide background on the evolution and function of the Rh proteins, and review recent studies employing molecular physiology which demonstrate their important contribution to branchial ammonia efflux. Rhag occurs in red blood cells, whereas several isoforms of both Rhbg and Rhcg occur in many tissues. In the branchial epithelium, Rhcg appears to be localized in apical membranes and Rhbg in basolateral membranes. Their gene expression is upregulated during exposure to high environmental ammonia or internal ammonia infusion, and may be sensitive to synergistic stimulation by ammonia and cortisol. Rhcg in particular appears to be coupled to H(+) excretion and Na(+) uptake mechanisms. We propose a new model for ammonia excretion in freshwater fish and its variable linkage to Na(+) uptake and acid excretion. In this model, Rhag facilitates NH(3) flux out of the erythrocyte, Rhbg moves it across the basolateral membrane of the branchial ionocyte, and an apical "Na(+)/NH (+)(4) exchange complex" consisting of several membrane transporters (Rhcg, V-type H(+)-ATPase, Na(+)/H(+) exchanger NHE-2 and/or NHE-3, Na(+) channel) working together as a metabolon provides an acid trapping mechanism for apical excretion. Intracellular carbonic anhydrase (CA-2) and basolateral Na(+)/HCO (-)(3) cotransporter (NBC-1) and Na(+)/K(+)-ATPase play indirect roles. These mechanisms are normally superimposed on a substantial outward movement of NH(3) by simple diffusion, which is probably dependent on acid trapping in boundary layer water by H(+) ions created by the catalysed or non-catalysed hydration of expired metabolic CO(2). Profitable areas for future investigation of Rh proteins in fish are highlighted: their involvement in the mechanism of ammonia excretion across the gills in seawater fish, their possible importance in ammonia excretion across the skin, their potential dual role as CO(2) transporters, their responses to feeding, and their roles in early life stages prior to the full development of gills.
منابع مشابه
Ammonia excretion in the Atlantic hagfish (Myxine glutinosa) and responses of an Rhc glycoprotein.
Hagfishes, the most ancient of the extant craniates, demonstrate a high tolerance for a number of unfavorable environmental conditions, including elevated ammonia. Proposed mechanisms of ammonia excretion in aquatic organisms include vesicular NH(4)(+) transport and release by exocytosis in marine crabs, and passive NH(3) diffusion, active NH(4)(+) transport, and paracellular leakage of NH3 or ...
متن کاملAmmonia transport in the kidney by Rhesus glycoproteins.
Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH...
متن کاملMarine, freshwater and aerially acclimated mangrove rivulus (Kryptolebias marmoratus) use different strategies for cutaneous ammonia excretion.
Rhesus (Rh) glycoproteins are ammonia gas (NH(3)) channels known to be involved in ammonia transport in animals. Because of the different osmoregulatory and ionoregulatory challenges faced by teleost fishes in marine and freshwater (FW) environments, we hypothesized that ammonia excretion strategies would differ between environments. Also, we hypothesized that cutaneous NH(3) volatilization in ...
متن کاملInteractions between cortisol and Rhesus glycoprotein expression in ureogenic toadfish, Opsanus beta.
In their native environment, gulf toadfish excrete equal quantities of ammonia and urea. However, upon exposure to stressful conditions in the laboratory (i.e. crowding, confinement or air exposure), toadfish decrease branchial ammonia excretion and become ureotelic. The objective of this study was to determine the influences of cortisol and ammonia on ammonia excretion relative to expression o...
متن کاملRh versus pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish.
Increased renal ammonia excretion in response to metabolic acidosis is thought to be a conserved response in vertebrates. We tested the hypothesis that Rhesus (Rh) glycoproteins in the kidney of the freshwater common carp, Cyprinus carpio, play a crucial role in regulating renal ammonia excretion during chronic metabolic acidosis. Exposure to water pH 4.0 (72 h) resulted in a classic metabolic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 15 شماره
صفحات -
تاریخ انتشار 2009